Clinical Research: Phase 1 - Phase 4

Drug Development & Delivery – Maximizing Immuno-Oncology Clinical Trial Success

Hailed by many as the future of cancer therapy, immuno-oncology leverages and unleashes the body’s immune system to recognize and eliminate cancer cells. Immune checkpoint inhibitors have already revolutionized the treatment of certain solid tumors and hematologic malignancies by acting on pathways that cancers co-opt to evade immune recognition. Now, emerging therapies, such as chimeric antigen receptor T- cells (CAR-T), dendritic cell vaccines, bi-specific T-cell engager (BiTE) antibodies, oncolytic viruses and even gene transfer and gene editing, are pushing the envelope even further.

The Great Leap Forward

Present day advances in immuno-oncology can be attributed to a paradigm shift in our understanding of cancer. Even up to the early 2000s, cancer was considered a disease of genetic origin, characterized by sustained proliferation; resistance to apoptosis; and the ability to promote angiogenesis, invasion, and metastasis. However, this view failed to account for the dynamic nature of the interactions between the tumor and its microenvironment — not just normal surrounding tissue cells, but also the immune system.

Now, we understand that the immune system plays a dual role in cancer, not only protecting the host against tumor formation, but also shaping tumor immunogenicity. This understanding has led to the development and approval of new immunotherapies, heralding a new — and potentially lucrative — era of cancer treatment. Immunotherapy trials now comprise more than one third of the clinical oncology space. In 2016, the cancer immunotherapy market was estimated to be $41 billion, and it is expected to grow to nearly $119 billion by 2025.1

Small biotech and specialty pharma are poised to play a critical role in this growth, but will face challenges that are intrinsic to the development of immunotherapeutic agents. Immunotherapy innovations work differently than cytotoxic chemotherapy, and these differences may impact dosing, response measurement, biomarker validation, selection of combination therapies, and identification of adverse events. Understanding and overcoming these challenges will be critical to clinical trial success and, ultimately, market approval.

Read more at Drug Development & Delivery.